超音波顕微鏡の音場と画像

Naohiro Hozumi Toyohashi University of Technology, JAPAN hozumi@icceed.tut.ac.jp

(1`

Scanning Acoustic Impedance Microscopy

音響インピーダンス顕微鏡開発の目的。

Improvement of

accuracy

Shape of transducer

- 集束角22°
- ・中心周波数80MHz

Calculation of potential

(10)

Potential distribution

-1.00

-0.75

-0.50

-0.25

-0.00

-0.25

-0.50

Itensity[

Spherical transducer.

Wave propagation.

Wave propagation.

$$\begin{pmatrix} k_{s1} & k_{p1} & k_{s2} & -k_{p2} \\ -k_{s1} & k_{p1} & k_{s2} & k_{p2} \\ \rho_{1} & -\rho_{1} & \rho_{2} & \rho_{2} \\ -\rho_{1} & -\frac{\mu_{1}\rho_{1}}{\lambda_{1}+2\mu_{1}} & \rho_{2} & -\frac{\mu_{2}\rho_{2}}{\lambda_{2}+2\mu_{2}} \end{pmatrix} \begin{pmatrix} \cos\theta_{sr} & \sin\theta_{pr} & \cos\theta_{st} & \sin\theta_{pt} \\ \sin\theta_{sr} & \cos\theta_{pr} & \sin\theta_{st} & \cos\theta_{pt} \\ \sin2\theta_{sr} & \cos2\theta_{sr} & \sin2\theta_{st} & \cos2\theta_{st} \\ \cos2\theta_{sr} & \sin2\theta_{pr} & \cos2\theta_{st} & \sin2\theta_{pt} \end{pmatrix} \begin{pmatrix} A_{sr} \\ A_{pr} \\ A_{st} \\ A_{pt} \end{pmatrix}$$

$$= \begin{pmatrix} k_{s1} \cos \theta_{si} & -k_{p1} \sin \theta_{pi} \\ k_{s1} \sin \theta_{si} & k_{p1} \cos \theta_{pi} \\ \rho_{1} \sin 2\theta_{si} & \rho_{1} \cos 2\theta_{si} \\ \rho_{1} \cos 2\theta_{si} & -\frac{\mu_{1}\rho_{1}}{\lambda_{1} + 2\mu_{1}} \sin 2\theta_{pi} \end{pmatrix} \begin{pmatrix} A_{si} \\ A_{pi} \end{pmatrix}$$
$$= \begin{pmatrix} k_{s1} & -k_{p1} \\ k_{s1} & k_{p1} \\ \rho_{1} & \rho_{1} \\ \rho_{1} & -\frac{\mu_{1}\rho_{1}}{\lambda_{1} + 2\mu_{1}} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{si} & \sin \theta_{pi} \\ \sin \theta_{si} & \cos \theta_{pi} \\ \sin 2\theta_{si} & \cos 2\theta_{si} \\ \cos 2\theta_{si} & \sin 2\theta_{pi} \end{pmatrix} \begin{pmatrix} A_{si} \\ A_{pi} \end{pmatrix}$$

Fourier analysis

Result

<u>2D IFT(2次元 逆フーリエ変換)</u>

$$P_{z}(x, y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} \left\{ A_{z}(k_{x}, k_{y}) \exp(-jk_{z}z) \right\} \exp(-jk_{x}x - jk_{y}y) dk_{x} dk_{y}$$

(20)

Spherical transducer. (80 MHz)

Analysis result

Apparent acoustic impedance of the target assuming vertical incidence.

Apparent acoustic ' impedance of the target:

Apparent reflection constant target: $S_{tgt}(Z_{tgt}, c_{tgt}, \theta_{0_{max}})/S_0 =$ $\int_0^{\theta_{0_{max}}} 2\pi L^2 \sin \theta_0 R_{sub \to tgt}(\theta_0) T'_{0 \to sub}(\theta_0) d\theta_0$ reference: $S_{ref}(Z_{ref}, c_{ref}, \theta_{0_{max}})/S_0 =$ $\int_0^{\theta_{0_{max}}} 2\pi L^2 \sin \theta_0 R_{sub \to ref}(\theta_0) T'_{0 \to sub}(\theta_0) d\theta_0$

$$\begin{array}{l} \text{arget:} \\ Z_{tgt_app} = \frac{1 + \frac{S_{tgt}(Z_{tgt}, c_{tgt}, \theta_{0_max})}{S_{ref}(Z_{ref}, c_{ref}, \theta_{0_max})} \cdot \frac{Z_{ref} - Z_{sub_l}}{Z_{ref} + Z_{sub_l}} \cdot Z_{sub_l} \\ 1 - \frac{S_{tgt}(Z_{tgt}, c_{tgt}, \theta_{0_max})}{S_{ref}(Z_{ref}, c_{ref}, \theta_{0_max})} \cdot \frac{Z_{ref} - Z_{sub_l}}{Z_{ref} + Z_{sub_l}} \cdot Z_{sub_l} \\ \end{array} \right)$$

Effect of compensation.

Before compensation

vertical incidence assumed

After compensation

Ref: air

Distribution of the acoustic impedance.

(26)

3D deconvolution processing

Acoustic impedance images

Cell size observation

Observation system for cultured cells.

Waveform and spectrum.

(31)

Sapphire rod transducer for high resolution. Ζ Tissu е **Substrat** е θ_0 max θ_0 Transduc - V (32)

Flat transducer with a lens.

Flat transducer with a lens for high freq. (300 MHz)

Cultured glial cells, rat.

光学顕微鏡では内部構造が見えない

縦波と横波の出し方。

縦波特性は体積弾性率Kで決まる。

 $c_p = \sqrt{\left(K + \frac{4}{3}G\right)/\rho},$

•固体

固体のみ

横波特性はずり弾性率Gで決まる。

縦波入射→縦波反射と 横波入射→横波反射のモードが使える。

縦波入射→横波反射と 横波入射→縦波反射は集束しない。

音響インピーダンスと音速 縦波:空気くゴムく水 横波:空気=水くゴム 横波で見ると、ゴムが最も硬くて水と空気は同じ程度。

反射強度 縦波: 空気>ゴム>水 横波: 空気=水>ゴム 音響インピーダンスと音速 縦波: 空気<ゴム<水 横波: 空気=水<ゴム 横波で見ると、ゴムが最も硬くて水と空気は同じ程度。₍₄₁

まとめ

超音波顕微鏡の2種類の振動子 球面型 レンズ付 フーリエ解析により音場を計算 音響インピーダンスに変換

Thank you for your attention.