
超音波顕微鏡のう蝕診断への応用の可能性

東北大学 口腔機能形態学講座口腔システム補綴学分野 障害者歯科治療部 長沼由泰

歯の構造

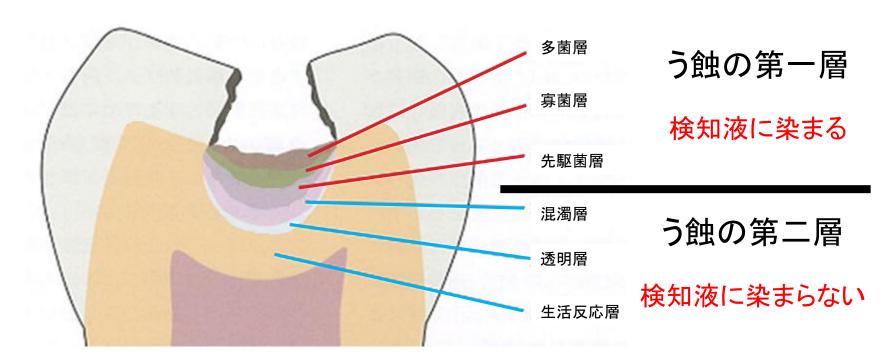
硬組織の構造はハイドロキシアパタイトCa10(PO4)6(OH)2

歯の化学組成

	無機質	有機質	水分
エナメル質	95%	2%	3%
象牙質	69%	20%	11%
セメント質	65%	23%	12%

歯の無機質組成

	Ca	Р	Ca/P	Mg
エナメル質	36.0%	17.7%	2.03%	0.44%
象牙質	27.0%	13.0%	2.08%	1.10%
(骨)	24.5%	10.5%	2.33%	0.55%

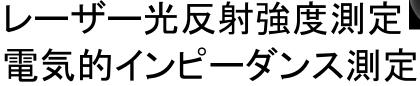

(乾燥重量%)

う蝕歯

う蝕の病変は多種多様である

現段階におけるう蝕の定義

今里 聡 ら、削るう蝕削らないう蝕 より


	う蝕の第一層	う蝕の第二層
フッ素濃度	上昇	低下
カルシウム濃度	上昇	低下
リン濃度	上昇	低下
マグネシウム濃度	上昇	低下

う蝕診査方法

頻度

大

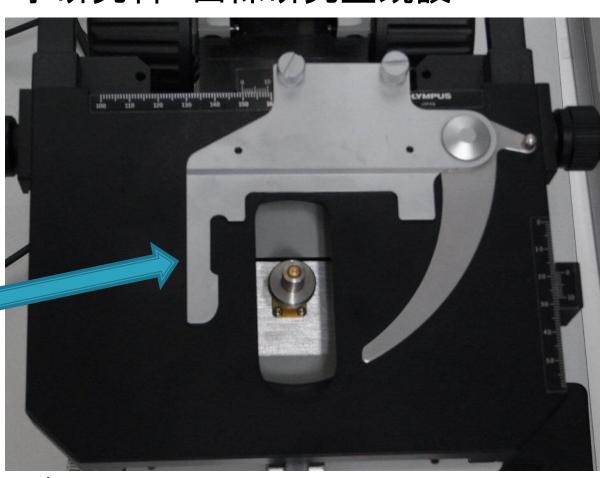
視診 触診 レントゲン写真読影 主観的評価

客観的評価

客観的う蝕診査の問題点

レーザー光反射強度測定 浅い初期う蝕の判定が不可能¹⁾ 測定部の完全防湿が必要¹⁾

電気的インピーダンス測定 浅い初期齲蝕の判定が不可能¹⁾ 測定部の完全防湿が必要^{1) 2)} 観察者内変動と観察者間変動がみられる²⁾


客観的う蝕診査の確立は未だされていない

- 1)飯田 翠, 鍵下 麻, 二木 昌, 中田 稔. DIAGNOdentTMのう蝕診断に関する研究 カリエスメーター値との比較によるう蝕分類の試み 小児歯科学雑誌 2004
- 2)Tagtekin DA, Ozyoney G, Baseren M, et al.
 Caries detection with DIAGNOdent and ultrasound.
 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2008

超音波顕微鏡

東北大学医工学研究科 西條研究室既設

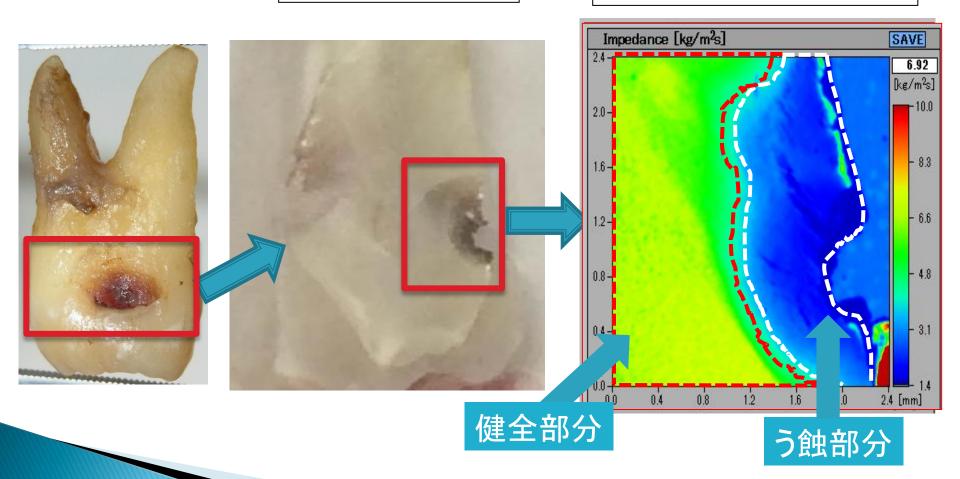
ホンダ電子株式会社 AMS-50SI

評価方法

- 1) 超音波顕微鏡による研磨標本の撮像
- 2)SEM像を撮影

EDXによるCa・P・F・Mgの元素分析1)2)

分析結果をもとに う蝕部分・健全部分の範囲を確認


- 1.坂井 剛ら 歯頸部露出象牙質に関する超微構造的および元素分析的研究. 歯科学報 1992
- 2.森脇一成ら う蝕歯中のFe, Zn, Coの放射化分析による定量 Radioisotopes 1999

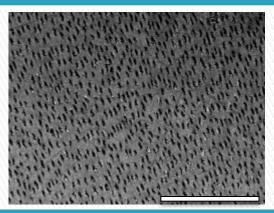
超音波顕微鏡による観察

標本

研磨切片

超音波顕微鏡像

左上の大臼歯を 歯頚部う蝕歯を矢状断方向に切断


SEMによる撮影とEDXによる分析

正常象牙質

齲蝕象牙質

SEM像(倍率 500倍

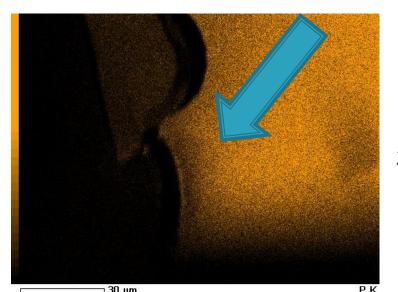
bar=100μm)

EDXによる元素分析結果

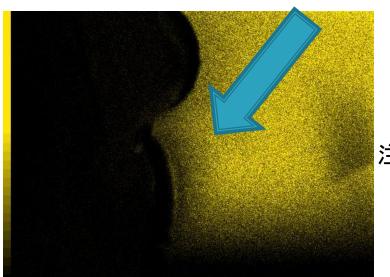
元素	質量%
P	33.71%
Ca	66.29%

Ca/P 重量比=1.966

元素	質量%
P	40.86%
Ca	59.14%

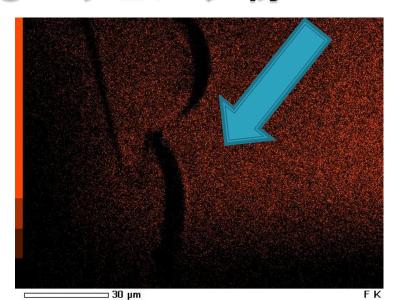

Ca/P 重量比=1.447

Ca/P重量比の減少

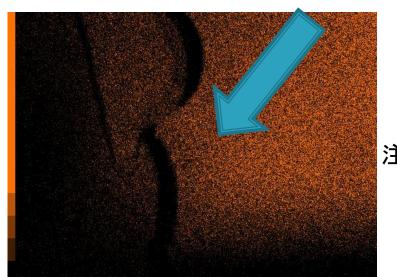

→齲蝕の進行に対応していることを示唆

EDXによるマッピング像

注目元素:P

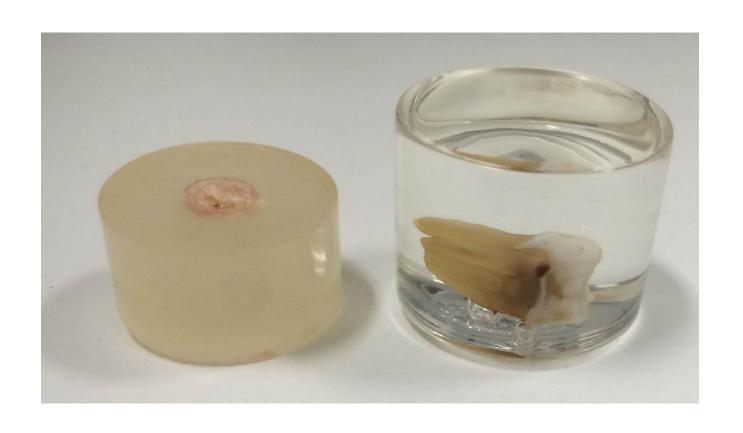

注目元素:Ca

→:う蝕部分


Ca K

EDXによるマッピング像

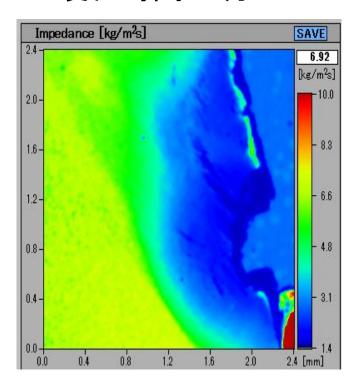
注目元素:F



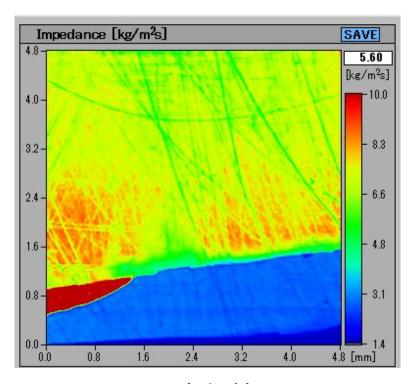
注目元素:Mg

→:う蝕部分

Mg K


現在の問題点①

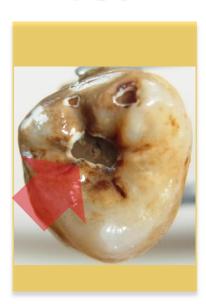
なるべく透明度の高いもので包埋したいが・・・

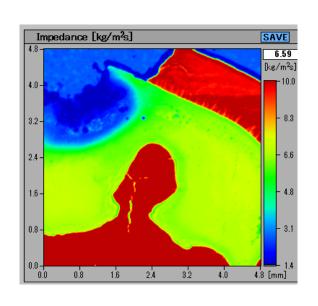

現在の問題点①

硬化時間:5分

包埋材 GC ユニファストⅢクリア

硬化時間:数日




包埋材 メタクリル酸メチル

包埋材の違いで硬さの評価に違いが生じている?

現在の問題点②

最終的には歯冠軸方向から 超音波顕微鏡像を撮影したいが・・・

歯に対しての深部への到達度は低い

	エナメル質	象牙質	セメント質
ヌープ硬度	表層2000 内層300~400	60~150	4 ~ 5

展望

う蝕への非侵襲的検査かつ定量的診査機器の開発

う蝕への非侵襲性の無い診断機器の開発

家庭等でのスクリーニングへの応用